Mating type dynamics (together with Dave Rogers and George Constable)
Self-incompatible mating types are (more or less) the norm in the fungal world and also observed in various other species (e.g. Tetrahymena thermophila or Dictyostelium discoideum). Often there do not only exist 2 mating types but there can be up to hundreds or thousands. A simple question to ask is: Given a finite population of N individuals, each carrying a certain self-incompatible mating type, how many mating types do we expect to see in the population on average? Quantifying genetic drift and balancing selection we found estimates for this value when emergence of new mating types is rare. Other interesting quantities are the invasion probability of a new mating type, the impact of the asexual reproduction cycle, or the mean time to extinction of a resident mating type allele.
Evolution of mating types in finite populations: the precarious advantage of being rare (Journal of Evolutionary Biology) (view online)
Invasion and extinction dynamics of mating types under facultative sexual reproduction (Genetics) (view online) (preprint)

Sexually antagonistic selection (together with researchers from the Special Topics Network “Linking local adaptation with the evolution of sex differences” from the European Society of Evolutionary Biology)
We studied the genomic patterns of sexually antagonistic selection and reviewed how tools from the field of local adaptation can be adapted to this context. Additionally, we provide best-practices for setting up experiments to obtain suitable data and for the theoretical analyses of these data.
The search for sexually antagonistic genes: Practical insights from studies of local adaptation and statistical genomics (to appear in Evolution Letters)